Modulus-based iterative methods for constrained Tikhonov regularization
نویسندگان
چکیده
منابع مشابه
Modulus-based iterative methods for constrained Tikhonov regularization
Tikhonov regularization is one of the most popular methods for the solution of linear discrete ill-posed problems. In many applications the desired solution is known to lie in the nonnegative cone. It is then natural to require that the approximate solution determined by Tikhonov regularization also lies in this cone. The present paper describes two iterative methods, that employ modulus-based ...
متن کاملArnoldi-Tikhonov regularization methods
Tikhonov regularization for large-scale linear ill-posed problems is commonly implemented by determining a partial Lanczos bidiagonalization of the matrix of the given system of equations. This paper explores the possibility of instead computing a partial Arnoldi decomposition of the given matrix. Computed examples illustrate that this approach may require fewer matrix-vector product evaluation...
متن کاملFast CG-Based Methods for Tikhonov-Phillips Regularization
Tikhonov–Phillips regularization is one of the best-known regularization methods for inverse problems. A posteriori criteria for determining the regularization parameter α require solving (∗) (AA+ αI)x = Ay for different values of α. We investigate two methods for accelerating the standard cg-algorithm for solving the family of systems (∗). The first one utilizes a stopping criterion for the cg...
متن کاملTikhonov regularization based on generalized Krylov subspace methods
We consider Tikhonov regularization of large linear discrete ill-posed problems with a regularization operator of general form and present an iterative scheme based on a generalized Krylov subspace method. This method simultaneously reduces both the matrix of the linear discrete ill-posed problem and the regularization operator. The reduced problem so obtained may be solved, e.g., with the aid ...
متن کاملSylvester Tikhonov - regularization methods in image restoration
In this paper, we consider large-scale linear discrete ill-posed problems where the right-hand side contains noise. Regularization techniques such as Tikhonov regularization are needed to control the effect of the noise on the solution. In many applications such as in image restoration the coefficient matrix is given as a Kronecker product of two matrices and then Tikhonov regularization proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2017
ISSN: 0377-0427
DOI: 10.1016/j.cam.2016.12.023